If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2-49x=0
a = 42; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·42·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*42}=\frac{0}{84} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*42}=\frac{98}{84} =1+1/6 $
| -19t-8=-17t | | |4x+4|=24 | | -4(x-12)=40 | | 9.4z-14.3=-19.2z | | -16-5k=-3k+16 | | 4y−1=31 | | 7+3x=-5x+7 | | -20-f=-3f+12 | | 3a-4=5-2a•2 | | 20x+3=5x+78 | | 8t+3-2+11=58 | | -g=18+8g | | 4a-6-7a=-15 | | 15x-13=5x+7 | | -9.79-13.8h=-12.9h+7.85 | | -5(x+2)-11=16+3 | | 5(2-3n)=10-15n | | 2/9(3-2d)-2=-4 | | 4(v+6)-2v=38 | | 20+19m=12m-16-13 | | x5=43 | | 6c-10=7c | | 3+j=-3j+19 | | 1|3(18x+12)=-3x+40 | | 8-5p=-8p-10 | | 12x+-9+4+24x=43 | | 7(w+1)=63 | | 1/4-3x=4 | | 2(n-3)=+1 | | 6y+21+5y=6 | | -16.6g-19.93-9.45=18.67-13.5g | | k/6=-15+18 |